Preparation of segmented microtubules to study motions driven by the disassembling microtubule ends.
نویسندگان
چکیده
Microtubule depolymerization can provide force to transport different protein complexes and protein-coated beads in vitro. The underlying mechanisms are thought to play a vital role in the microtubule-dependent chromosome motions during cell division, but the relevant proteins and their exact roles are ill-defined. Thus, there is a growing need to develop assays with which to study such motility in vitro using purified components and defined biochemical milieu. Microtubules, however, are inherently unstable polymers; their switching between growth and shortening is stochastic and difficult to control. The protocols we describe here take advantage of the segmented microtubules that are made with the photoablatable stabilizing caps. Depolymerization of such segmented microtubules can be triggered with high temporal and spatial resolution, thereby assisting studies of motility at the disassembling microtubule ends. This technique can be used to carry out a quantitative analysis of the number of molecules in the fluorescently-labeled protein complexes, which move processively with dynamic microtubule ends. To optimize a signal-to-noise ratio in this and other quantitative fluorescent assays, coverslips should be treated to reduce nonspecific absorption of soluble fluorescently-labeled proteins. Detailed protocols are provided to take into account the unevenness of fluorescent illumination, and determine the intensity of a single fluorophore using equidistant Gaussian fit. Finally, we describe the use of segmented microtubules to study microtubule-dependent motions of the protein-coated microbeads, providing insights into the ability of different motor and nonmotor proteins to couple microtubule depolymerization to processive cargo motion.
منابع مشابه
In vitro assays to study the tracking of shortening microtubule ends and to measure associated forces.
Accurate segregation of mitotic chromosomes relies in part on a strong linkage between the kinetochores and the plus ends of spindle microtubules (MTs). These attachments are maintained even as the MTs shorten from their kinetochore-associated ends, and despite the large variability in the magnitude of load from the chromosomal "cargo." Analysis of the underlying mechanisms has recently been fa...
متن کاملThe kinesin-13 KLP10A motor regulates oocyte spindle length and affects EB1 binding without altering microtubule growth rates
Kinesin-13 motors are unusual in that they do not walk along microtubules, but instead diffuse to the ends, where they remove tubulin dimers, regulating microtubule dynamics. Here we show that Drosophila kinesin-13 klp10A regulates oocyte meiosis I spindle length and is haplo-insufficient - KLP10A, reduced by RNAi or a loss-of-function P element insertion mutant, results in elongated and mispos...
متن کاملAnaphase A: Disassembling Microtubules Move Chromosomes toward Spindle Poles
The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting fibers, and anaphase B, separation of the two poles from one another via spindle elongation. I focus here on a...
متن کاملHuman Sperm Aster Formation and Chromatin Configuration in Rabbit Oocytes Following Intracytoplasmic Sperm Injection Using a Piezo-Micromanipulator
In human fertilization, the sperm centrosome nucleates a radial array of microtubules called the sperm aster. The sperm aster is responsible for apposition of male and female pronuclei, and later gives rise to the first meiotic spindle. The objective of this study was to determine microtubule assembly and chromatin configuration in rabbit oocytes following intracytoplasmic injection with human ...
متن کاملOn the nature and shape of tubulin trails: implications on microtubule self-organization.
Microtubules, major elements of the cell skeleton are, most of the time, well organized in vivo, but they can also show self-organizing behaviors in time and/or space in purified solutions in vitro. Theoretical studies and models based on the concepts of collective dynamics in complex systems, reaction-diffusion processes and emergent phenomena were proposed to explain some of these behaviors. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 85 شماره
صفحات -
تاریخ انتشار 2014